

Available online at www.sciencedirect.com

Journal of Molecular Catalysis A: Chemical 211 (2004) 191-197

www.elsevier.com/locate/molcata

Physicochemical attributes of oxide supported Mo₂N catalysts synthesised via sulphide nitridation

Y.J. Lee^a, T.H. Nguyen^a, A. Khodakov^b, A.A. Adesina^{a,*}

^a Reactor Engineering & Technology Group, School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Sydney, NSW 2052, Australia

^b CNRS—Laboratoire de Catalyse, Universite des Sciences et Technologies de Lille, Villeneuve d'Ascq 59655, France

Received 14 July 2003; received in revised form 14 July 2003; accepted 8 October 2003

Abstract

This study deals with the preparation and characterisation of supported Mo₂N catalysts from the temperature programmed NH₃ nitridation of the precursor sulphides obtained via precipitation from homogeneous solution. Whilst nitridation temperature, H₂:NH₃ ratio and reaction time were found to be important determinants of the BET surface area, chemisorptive parameters, acid site strength, density and surface spectroscopic features were also influenced by support-type. Among the four supports (alumina, silica, zirconia and titania) used, the 12%Mo₂N/Al₂O₃ catalyst yielded the highest BET surface area (200 m² g⁻¹) while the ZrO₂-supported sample exhibited the best dispersion (13%) and lowest particle size at 10 nm. The heat of desorption for NH₃ based on TPD runs lies between -150 and -130 kJ mol⁻¹ for all catalysts and is comparable to those found for Pt supported on similar oxides. In spite of the high H₂ uptake on the Mo₂N/ZrO₂ catalyst, based on CO hydrogenation reaction, the turnover frequency decreased in the order: alumina > silica > zirconia > titania. © 2003 Elsevier B.V. All rights reserved.

Keywords: Molybdenum nitride; Fischer Tropsch reaction; Alumina; Zirconia; Silica; Titania

1. Introduction

Early transition metal nitrides constitute an important class of new catalytic materials which possess high activity for a variety of petrochemical reactions-hydrodesulphurisation, hydrodenitrogenation, hydrogenation, hydrogenolysis, dehydrogenation and isomerisation [1-4], due to their electronic resemblance to more expensive noble metals like Pt and Pd [5]. In particular, they offer excellent anticoking and sulphur-resistance characteristics and may therefore be used as multifunctional catalysts in the petroleum refining industry. They are commonly produced by temperature programmed reaction between the transition metal oxide and a nitrogen-containing agent such as N₂ or NH₃. The resulting metal nitrides therefore have relatively poor porosity and low surface areas. Development of novel techniques for the preparation of high surface area metal nitrides has therefore attracted substantial research efforts [6]. Previous studies

[7,8] in our laboratory have shown that high surface area metal sulphides may be obtained via precipitation from homogeneous solution (PFHS) on to an appropriate support. It is therefore conceivable that the metal sulphide may be employed as a precursor for the synthesis of the supported metal nitride since the temperature range for the nitridation process is similar to that for sulphidation.

In the present work, we report the preparation of Mo₂N supported on various semi-conductor oxides, namely; silica, alumina, zirconia and titania in order to determine the influence of support-type on the physicochemical characteristics of the catalyst. The pertinent nitridation reaction is

$$2\text{MoS}_2 + \text{NH}_3 + \frac{5}{2}\text{H}_2 \rightarrow \text{Mo}_2\text{N} + 4\text{H}_2\text{S}$$
(1)

O'Brien and co-workers [9] as well as Chen et al. [10] have reported the effect of several preparation variables such as temperature, duration of nitridation, nitriding gas composition, heating rate and source of materials (nitrogen and metals) on the attributes of the resulting metal nitride. Nitridation temperature will influence both the morphological properties of the catalyst and the extent of phase conversion from the sulphide to nitride. Furimsky [11] reported that

^{*} Corresponding author. Tel.: +61-2-9385-5268;

fax: +61-2-9385-5966.

E-mail address: a.adesina@unsw.edu.au (A.A. Adesina).

nitridation between 773 and 1173 K yielded various Mo nitride species (γ -Mo₂N and β -Mo₂N_{0.78} and even metallic Mo) with the γ -Mo₂N species being the most favoured at low temperatures. Although pure NH₃ has been used when Mo oxide is the substrate, the addition of H₂ will be necessary to facilitate sulphide reduction as may be seen from Eq. (1). Thus, H₂:NH₃ ratio will dictate the degree of reduction of the precursor before nitrogen dissolution in the Mo lattice. In order to provide a basis for quantitative optimisation, the effects of nitridation temperature, H₂:NH₃ ratio and reaction time on Mo₂N synthesis were investigated via a 2^3 factorial design in order to identify the 'best' conditions for catalyst preparation. The support influence was evaluated on the basis of BET area, chemisorption parameters, acid site density and strength. An assessment of the activity was also made using the CO hydrogenation reaction.

2. Experimental

2.1. Catalyst preparation

All chemicals were obtained from Aldrich (Sydney, Australia) with exception of zirconia supplied by Millenium Chemicals (Perth, Australia). Doubly distilled de-ionised water was used for preparing all solutions. The base MoS_2 was prepared on various supports (SiO₂, Al₂O₃, ZrO₂ and TiO₂) using precipitation from homogeneous solution. This involved the intimate mixing of 0.1 M of (NH₄) Mo_7O_{24} ·4H₂O with 1 g urea, 1 ml 0.75 M HNO₃ and 30 ml of thioacetamide with 0.7 g of the support in a 250 ml conical flask containing 10% (NH₄)₂S solution. The conical flask

was then placed in a continuous shaker water-bath maintained at 110 rpm and 363 K for 4 h. The resulting slurry was filtered, washed and dried at 393 K overnight. Nitridation was then carried out in the experimental set up shown in Fig. 1 by placing 0.7 g of the dried supported-MoS₂ between two layers of quartz wool in a quartz tube (i.d. = 6 mm), coaxial with a vertical tubular temperature programmable furnace. Brooks mass flow controllers were used to regulate the H₂ and NH₃ gas lines so that a total mixture of 100 ml min⁻¹ was passed downwards into the reactor (irrespective of the H₂:NH₃ ratio, 1 or 5, used). A heating rate of $5 \,\mathrm{K}\,\mathrm{min}^{-1}$ was employed to bring the reactor to the desired nitridation temperature (773-973 K) and maintained isothermally at that level for the reaction period (1 or 4 h). the samples were then cooled down in the nitriding gas and subsequently passivated in 1% O2/He mixture in view of the pyrophoric nature of the specimens. Eight catalysts were prepared using the conditions listed in Table 1.

2.2. Characterisation of catalyst samples

Physicochemical properties of the Mo nitride samples were determined in order to understand role of preparation conditions and support on the catalytic performance. BET surface area was measured using N₂ physisorption at 77 K on a Micromeritics Tristar 3000. H₂ uptake measurements were carried out at 373 K in a Micromeritics AutoChem 2910. The latter was also used determine acid site strength and concentration based on NH₃-temperature programmed desorption. Temperature programmed reduction (TPR) with hydrogen was performed on a ThermoCahn TGA 2121 at a heating rate of 2 K min^{-1} up to 873 K. FT-IR spectra were

Fig. 1. Schematic diagram of experimental set up.

Sample	Nitridation temp (K) 773	Ratio H ₂ :NH ₃		Time (h)	Avg BET surface area (m^2/g) (S _{BET})	Degrees of freedom	Variance estimates	Effect ID	Calc. F-values
1		1	1	1	78.94	8	96.62	Average	
2	973	1	1	1	92.36	4	18.08	Т	55.29
3	773	5	1	1	85.24	4	8.47	С	25.88
4	973	5	1	1	100.07	4	0.37	TC	1.15
5	773	1	1	4	88.12	4	14.94	t	45.62
6	973	1	1	4	110.12	4	3.96	Tt	12.09
7	773	5	1	4	98.02	4	1.47	Ct	4.49
8	973	5	1	4	120.12	4	-0.32	TCt	1

obtained from a Nicolet Nexus spectrophotometer scanning from 400 to 4000 cm^{-1} with 100 scans performed for each sample, at a resolution of 4 cm^{-1} with KBr as background.

For catalyst evaluation, the sample was cooled from the nitridation temperature, 973 K, to a reaction temperature of 573 K in the NH₃/H₂ mixture before admitting a reactant mixture of H₂:CO = 2 at a total flow rate of 30 ml min⁻¹ controlled and maintained by Brooks mass flow controller (5850 Series). Reactants were taken to 573 K in a preheater before entering the reactor/furnace assembly. Products (C₁–C₅ hydrocarbons) were analysed by on-line TCD gas chromatograph (Shimadzu Model GC-8A).

3. Results and discussion

3.1. BET surface area analysis

Table 1 shows the surface area of all eight silica supported catalysts prepared under different nitridation conditions. It is evident that nitridation temperature, H2:NH3 ratio and reaction time all had positive effects on the surface area with the highest BET area $(120.12 \text{ m}^2 \text{ g}^{-1})$ obtained at 973 K for treatment with $H_2:NH_3 = 5$ for 4 h. The variance estimates provided in column 8 were calculated via Yates' analysis and indicated that the three-factor interaction, TCt, has the smallest variance. The sign of each variance is simply an indication of the direction of its contribution suggesting that increase in all the three-factors would improve the catalyst BET surface area. Computed F-values displayed in column 10 were compared with the tabulated F-values at 95% confidence level (6.39). This confirmed the statistical significance of T, C and t as well as the two-factor interaction between temperature and time, Tt. Thus, the data may be described by

$$SA_{BET} = a_0 + a_1 X_T + a_2 X_C + a_3 X_t + a_4 X_T X_t$$
(2)

where

$$X_T = \frac{T - 773}{200}$$
$$X_C = \frac{C - 1}{4}$$

$$X_t = \frac{t-1}{3}$$

Linear regression provides estimates of the model coefficients as $a_0 = 77.85$, $a_1 = 14.1$, $a_2 = 8.47$, $a_3 = 10.98$ and $a_4 = 7.95$. As a result of this statistical analysis, subsequent supported Mo₂N catalysts were prepared using a nitriding gas mixture of H_2 :NH₃ = 5, at 973 K for 4 h. The contribution of the *Tt* factor interaction suggests that increasing the heating rate was also an important determinant of the catalyst surface area and indeed, increasing this variable beyond the $2 \text{ K} \text{min}^{-1}$ used in this study has the potential to further enhance BET area. Thus a heating rate of 5 K min⁻¹ was employed in subsequent catalyst preparations using other oxide supports. Fig. 2 reveals that the alumina-supported catalyst has the highest surface area $(200 \text{ m}^2 \text{ g}^{-1})$ while titania catalyst has the lowest surface area of about $9 \text{ m}^2 \text{ g}^{-1}$. Colling et al. [12] had also reported a BET area of $193 \text{ m}^2 \text{ g}^{-1}$ for Mo₂N/alumina catalyst. Interestingly, the trend in surface area among this group of inorganic oxide supports is also similar to that obtained for Co-Mo oxide supported on the same material but prepared via conventional impregnation technique [13].

Fig. 3. H_2 chemisorption parameters.

3.2. *H*₂ chemisorption and temperature programmed reduction

Data for pulse H₂ chemisorption on all four supported catalysts may be seen on Fig. 3. The surface of Mo₂N may contain metallic as well as acidic sites [14] which act as hydrogen activation centres, thus, H₂ uptake measurements may provide some indication of the catalytic effectiveness for hydrogenation reactions. It is evident that the PFHS method gave well-dispersed Mo nitride crystallites with the ZrO₂ catalyst yielding the best dispersion (12.81%) and the correspondingly lowest Mo₂N crystallite size (10.07 nm) while the poorest, Mo₂N/SiO₂ catalyst with 6.5% dispersion and 19.7 nm particles, is still comparable to those obtained by Zhang and co-workers [15]. Fig. 4 reveals that if the H₂ uptake surface area (between $30 \text{ m}^2 \text{ g}^{-1}$ for silica to a maximum of $70 \text{ m}^2 \text{ g}^{-1}$ for zirconia) was normalised with the BET surface area, it became apparent that less than 10% of the total surface area of the alumina and silica catalysts was available for hydrogen chemisorption while the zirconia and titania catalysts exhibited better surface H₂ adsorption capacity. Zhang et al. [15] also observed that only about 10%

Fig. 4. Mo₂N deposition efficiency.

of the surface Mo atoms were involved in H_2 activation on their alumina-supported Mo₂N. Dissociative adsorption of H_2 presumably takes place on both surface—Mo atoms and the nitrogen-deficient patch of Mo—N present on the surface of the catalyst [16].

H₂ temperature programmed reduction up to 873 K was conducted on all four samples and the spectra are shown in Fig. 5(a-d). Large peaks observed below 473 K for all supports are probably due to the rapid reaction between H₂ and oxygen on the catalyst surface. From a thermodynamic standpoint, the first and largest peak in all cases would be the reduction of adsorbed oxygen while, two other smaller peaks identifiable between 330 and 430 K may be attributed to the reduction of Mo⁴⁺ and Mo²⁺ species left over from the previous sulphide nitridation to Mo atoms. The absence of these two smaller peaks in the silica catalyst may be indicative of complete sulphide nitridation in the preceding step. However, the high temperature peaks (473–773 K) arose from the hydrogenation of NH₂ and N species present on surface after nitridation [17]. The area under these peaks reflect the relative concentration of these surface species and suggest that they may be more on the ZrO₂ and TiO₂ catalyst surface consistent with H₂ uptake and dispersion measurements. It, however, appears that the strength of the Mo–NH₂ bonds is roughly the same on the ZrO_2 and TiO_2 supports as evidenced by the high reduction temperature (ca. 600 K) relative to the Al₂O₃ and SiO₂ catalysts which are located at about 550 and 500 K, respectively.

3.3. FT-IR analysis

FT-IR spectra of Mo₂N on different supports are shown on Fig. 6. Silica-supported Mo₂N shows a strong peak at $1100 \,\mathrm{cm}^{-1}$, corresponding to the asymmetric stretching (AS) vibrational mode of the Si-O-Si bridge of the siloxane links [18]. Broadband in the region between 3000 and 4000 cm⁻¹ possibly assigned to the OH stretching mode due to the presence of moisture in catalyst, and same observation was found from all supports [18]. Alumina-supported Mo₂N has two small peaks at 1450 and 1485 cm^{-1} which are due to the deformational mode of NH_4^+ formed by the interaction of ammonia with the Bronsted acid sites similar to the observations of Nagai et al. [17]. Interestingly those same peaks were also shown on the other supports between 1300 and $1500 \,\mathrm{cm}^{-1}$ albeit with reduced magnitude on the titania catalyst. Maity et al. [19,20] identified tetrahedral and octahedral Mo species in the region between 800 and $1200 \,\mathrm{cm}^{-1}$ and thus, the peaks located between 830–930 and $930-990 \,\mathrm{cm}^{-1}$ are assigned to these surface species. The formation of γ -Mo₂O_xN_{1-x} and γ -Mo₂N was also observed in the region of $700-1200 \text{ cm}^{-1}$ by Zhang et al. [15].

3.4. NH₃ temperature programmed desorption

Further catalyst characterisation was therefore carried out using NH₃-temperature programmed desorption to

Fig. 5. (a) TPR of 12% Mo₂N/SiO₂; (b) TPR of 12% Mo₂N/Al₂O₃; (c) TPR of 12% Mo₂N/ZrO₂; (d) TPR of 12% Mo₂N/TiO₂.

determine the acid site concentration and strength on all the catalysts. This procedure was performed on the Autochem2910 using 0.4% NH₃/He at various heating rates (5–15 K min⁻¹). Fig. 7 plots the heat of desorption, $-E_d$, and relative quantity of NH₃ uptake (A/C) as a function of the support. Interestingly, Mo₂N/ZrO₂ catalyst which has

Fig. 6. FT-IR of 12% Mo₂N on various supports.

highest H₂ adsorption capacity possess the lowest heat of desorption for NH₃ as well as the smallest NH₃ uptake. This would suggest that there is a relatively low concentration of acid sites on this support while the high H₂ capacity was probably due to the presence of high surface Mo atoms since both acid and metal atom sites participate in the H₂ adsorption process. Nevertheless, $-E_d$ values for SiO₂, Al₂O₃ and TiO₂ are practically the same although the Al₂O₃-supported Mo₂N has the highest NH₃ uptake. It is also apparent that the zirconia acid sites (lowest $-E_d$) are also relatively weak compared to the other three supports.

3.5. Fischer Tropsch activity evaluation

All catalysts were evaluated with CO hydrogenation reaction at 553 K and 1 atm in the same reactor where nitridation was performed. Typically, the catalyst was cooled down in the nitriding gas stream to reaction temperature at which point 50% CO/N₂ was mixed with the incoming H₂ before being admitted into the reactor.

Fig. 8 reveals that the Mo₂N/Al₂O₃ catalyst is significantly better for hydrocarbon production than all other supports. The trend of the global reaction rate is, similar

Fig. 7. NH₃ TPD results for all supports.

Fig. 8. Effect of support-type on CO hydrogenation reaction rate.

to what has been reported for other noble metal supported on similar oxides [21]. Indeed, comparison on the basis of specific activity or TOF (reaction rate/H₂ uptake) also showed that alumina-supported Mo₂N (cf. Fig. 9) is still the most superior catalyst for CO hydrogenation. This may

Fig. 9. Turnover frequency of catalysts.

Fig. 10. Chain growth probability on the Mo₂N catalysts.

be due to right balance between particle size, acid site density and strength (NH₃ heat of desorption, E_d). Interestingly, Pt/alumina has similar characteristics and in fact E_d for Pt (-142 kJ mol⁻¹) [22] compares well with Mo₂N (-145.9 kJ mol⁻¹) obtained in this study provides further incentive to explore Mo₂N as a possible cheap replacement for expensive Pt catalyst in appropriate reactions. However, as seen in Fig. 10, the low chain growth factor, α , obtained from an Anderson–Schulz–Flory plot of the product distribution (C₁–C₅ hydrocarbons) indicates that there is scope for further developmental work on this new system.

4. Conclusions

This study revealed that high surface area catalysts may be prepared via nitridation of MoS_2 obtained from PFHS method. High temperature and $H_2:NH_3$ ratio favoured high area generation suggesting that the MoS_2 was first reduced by H_2 followed by incorporation of N atoms into the interstitial space between Mo atoms. Comparison between silica, alumina, zirconia and titania as supports showed that alumina catalyst has the highest surface area but H₂ chemisorption was superior on the zirconia and titania supports. However, there was no evidence of H₂ spillover or extra adsorption on interface between Mo₂N species and the support (support-interaction). The trend in the global hydrocarbon production rate parallels that seen during NH₃-TPD in terms of acid site population and strength, Mo₂N/Al₂O₃ catalyst was the most active catalyst and possess also the highest turnover frequency. Although further developmental work is required to improve the chain growth probability of the alumina catalyst, present data suggest that Mo₂N has Pt-like behaviour and may be a cheaper option for FT catalysis in the overall quest for economical gas-to-liquid technology.

Acknowledgements

Financial support of the Australian Research Council is gratefully acknowledged.

References

- [1] S.T. Oyama, Catal. Today 15 (1992) 17.
- [2] G.M. Dolce, D.E. Savage, L.T. Thompson, Energy Fuels 11 (1997) 668.
- [3] M. Nagai, Y. Goto, O. Uchino, S. Omi, Catal. Today 45 (1998) 335.

- [4] R.R. Chianelli, G. Berhault, Catal. Today 53 (1999) 357.
- [5] R.B. Levy, M. Boudart, Science 181 (1973) 547.
- [6] S.T. Oyama, in: S.T. Oyama (Ed.), The Chemistry of Transition Metal Carbides and Nitrides, London Blackie Academic & Professional, 1996, p. 1.
- [7] S.C. Moffat, A.A. Adesina, Catal. Lett. 37 (1996) 167-172.
- [8] V. Meeyoo, A.A. Adesina, G. Foulds, React. Kinet. Lett. 56 (1995) 231.
- [9] R.J. O'Brien, L. Xu, X. Bi, P.C. Eklund, B.H. Davis, in: S.T. Oyama (Ed.), The Chemistry of Transition Metal Carbides and Nitrides, London Blackie Academic & Professional, 1996, p. 362.
- [10] J.C. Chen, B. Fruhberger, M.D. Weisel, J.E. Baumgartner, B.D. De Vries, in: S.T. Oyama (Ed.), The Chemistry of Transition Metal Carbides and Nitrides, London Blackie Academic & Professional, 1996, p. 439.
- [11] E. Furimsky, Appl. Catal. A: Gen. 240 (2003) 1.
- [12] C.W. Colling, J.-G. Choi, L.T. Thompson, J. Catal. 160 (1996) 35.
- [13] H. Chen, A.A. Adesina, Appl. Catal. A: Gen. 112 (1994) 87.
- [14] K. Migai, K. Stancyzk, C. Sayag, D. Brodzki, G. Djega-Mariadassou, J. Catal. 183 (1999) 63.
- [15] Y.-J. Zhang, Q. Xin, I. Rodriguez-Ramos, A. Guerrero-Ruiz, Appl. Catal. A: Gen. 180 (1999) 237.
- [16] X.-S. Li, Y.-J. Zhang, Q. Xin, C.-X. Ji, Y.F. miao, L. Wang, React. Kinet. Catal. Lett. 57 (1996) 177.
- [17] M. Nagai, Y. Goto, A. Irisawa, S. Omi, J. Catal. 191 (2000) 128.
- [18] T. Xiao, A.P.E. York, K.S. Coleman, J.B. Claridge, J. Sloan, J. Charmock, M.L.H. Green, J. Mater. Chem. 11 (2001) 3093.
- [19] S.K. Maity, M.S. Rana, B.N. Srinivas, S.K. Bej, G.M. Dhar, T.S.R. Prasada Rao, J. Mol. Catal. A: Chem. 153 (2000) 121.
- [20] S.K. Maity, M.S. Rana, S.K. Bej, J. Ancheyta-Juarez, G.M. Dhar, T.S.R. Prasada Rao, J. Mol. Catal. A: Chem. 205 (2000) 215.
- [21] M.A. Vannice, J. Catal. 40 (1975) 129.
- [22] V. Labalme, B. Beguin, F. Gaillard, M. Primet, App. Catal. A: Gen. 19 (2000) 307.